GCSE Physics equations

Equations required for Higher Tier papers only are indicated by HT in the left hand column.

Equation number	Word equation	Symbol equation
1	weight = mass \times gravitational field strength (g)	W = m g
2	work done = force × distance along the line of action of the force	W = F s
3	force applied to a spring = spring constant × extension	F = k e
4	moment of a force = force × distance normal to direction of force	M = F d
5	$pressure = \frac{force\ normal\ to\ a\ surface}{area\ of\ that\ surface}$	p = F/A
6	distance travelled = speed × time	s = v t
7	$acceleration = \frac{change\ in\ velocity}{time\ taken}$	$a = \Delta v/t$
8	resultant force = mass × acceleration	F = m a
9 HT	momentum = mass × velocity	p = m v
10	kinetic energy = $0.5 \times \text{mass} \times \text{speed}^2$	$E_k = \frac{1}{2} mv^2$
11	gravitational potential energy = mass × gravitational field strength (g) × height	$E_p = m g h$
12	$power = \frac{energy\ transferred}{time}$	<i>P</i> = E/t
13	$power = \frac{work \ done}{time}$	<i>P</i> = W/t
14	$efficiency = \frac{useful \ output \ energy \ transfer}{total \ input \ energy \ transfer}$	
15	$efficiency = \frac{useful\ power\ output}{total\ power\ input}$	
16	wave speed = frequency × wavelength	$v = f \lambda$
17	charge flow = current × time	Q = 1 t
18	potential difference = current × resistance	V = I R
19	power = potential difference × current	P = V I
20	power = current ² × resistance	$P = I^2 R$
21	energy transferred = power × time	E = P t
22	energy transferred = charge flow × potential difference	E = Q V
23	$density = \frac{mass}{volume}$	ρ = m / V

GCSE Physics equations Fill in gaps

Equations required for Higher Tier papers only are indicated by HT in the left hand column.

Equation number	Word equation	Symbol equation
1	$\underline{\hspace{1cm}}$ = mass × gravitational field strength (g)	W = m g
2	work done = force × distance along the line of action of the force	W = s
3	force applied to a spring = × extension	F = k e
4	moment of a force = × distance normal to direction of force	M = F d
5	$pressure = \frac{force\ normal\ to\ a\ surface}{area\ of\ that\ surface}$	p =/
6	distance travelled = × time	s = v t
7	${} = \frac{change \ in \ velocity}{time \ taken}$	$a = \Delta v/t$
8	resultant force = mass × acceleration	F = a
9 HT	momentum = mass × velocity	p = v
10	= 0.5 × mass × speed ²	$E_k = \frac{1}{2} mv^2$
11	gravitational potential energy = × gravitational field strength (g) × height	$E_p = m g h$
12	$power = \frac{energy\ transferred}{time}$	P =/
13	= work done time	<i>P</i> = W/t
14	$= \frac{useful\ output\ energy\ transfer}{total\ input\ energy\ transfer}$	
15	$efficiency = \frac{useful\ power\ output}{total\ power\ input}$	
16	wave speed = frequency ×	$v = f \lambda$
17	charge flow = × time	Q = 1 t
18	potential difference = current × resistance	V = R
19	power = potential difference ×	P = V I
20	power = current ² ×	$P = I^2 R$
21	energy transferred = power × time	E = t
22	energy transferred = charge flow × potential difference	E = Q
23	$density = \frac{mass}{volume}$	ρ = m /