GCSE Physics equations

Equations required for Higher Tier papers only are indicated by HT in the left hand column.

Equation number	Word equation	Symbol equation
1	weight $=$ mass \times gravitational field strength (g)	$W=m g$
2	work done $=$ force \times distance along the line of action of the force	$W=F s$
3	force applied to a spring = spring constant \times extension	$F=k e$
4	moment of a force $=$ force \times distance normal to direction of force	$M=F d$
5	$\text { pressure }=\frac{\text { force normal to a surface }}{\text { area of that surface }}$	$p=F / A$
6	distance travelled $=$ speed \times time	$s=v t$
7	$\text { acceleration }=\frac{\text { change in velocity }}{\text { time taken }}$	$a=\Delta v / t$
8	resultant force $=$ mass \times acceleration	$F=m a$
9 HT	momentum $=$ mass \times velocity	$p=m v$
10	kinetic energy $=0.5 \times$ mass \times speed 2	$E_{k}=1 / 2 m v^{2}$
11	gravitational potential energy $=$ mass \times gravitational field strength $(\mathrm{g}) \times$ height	$E_{p}=m g h$
12	$\text { power }=\frac{\text { energy transferred }}{\text { time }}$	$P=\mathrm{E} / \mathrm{t}$
13	$\text { power }=\frac{\text { work done }}{\text { time }}$	$P=W / \mathrm{t}$
14	$\text { efficiency }=\frac{\text { use ful output energy transfer }}{\text { total input energy transfer }}$	
15	$\text { efficiency }=\frac{\text { use ful power output }}{\text { total power input }}$	
16	wave speed $=$ frequency \times wavelength	$v=f \lambda$
17	charge flow $=$ current \times time	$Q=1 t$
18	potential difference $=$ current \times resistance	$V=I R$
19	power $=$ potential difference \times current	$P=V I$
20	power $=$ current $^{2} \times$ resistance	$P=I^{2} R$
21	energy transferred $=$ power \times time	$E=P t$
22	energy transferred $=$ charge flow \times potential difference	$E=Q V$
23	$\text { density }=\frac{\text { mass }}{\text { volume }}$	$\rho=m / V$

GCSE Physics equations Fill in gaps

Equations required for Higher Tier papers only are indicated by HT in the left hand column.

Equation number	Word equation	Symbol equation
1	$\ldots \ldots \ldots$ _ mass \times gravitational field strength (g)	$W=m g$
2	work done $=$ force \times distance along the line of action of the force	$W=\ldots s$
3	force applied to a spring $=\ldots \times$ extension	$F=k e$
4	moment of a force = \qquad \times distance normal to direction of force	$M=F d$
5	$\text { pressure }=\frac{\text { force normal to a surface }}{\text { area of that surface }}$	$p=\ldots \ldots$
6	distance travelled $=\ldots \ldots \times$ time	$s=v t$
7	$\ldots=\frac{\text { change in velocity }}{\text { time taken }}$	$a=\Delta v / t$
8	resultant force $=$ mass \times acceleration	$F=\ldots a$
9 HT	momentum $=$ mass \times velocity	$p=\ldots v$
10	$\ldots=0.5 \times{\text { mass } \times \text { speed }^{2}}^{2}$	$E_{k}=1 / 2 m v^{2}$
11	gravitational potential energy $=$ \qquad \times gravitational field strength $(\mathrm{g}) \times$ height	$E_{p}=m g h$
12	$\text { power }=\frac{\text { energy transferred }}{\text { time }}$	$P=\ldots$
13	$\ldots=\frac{\text { work done }}{\text { time }}$	$P=\mathrm{W} / \mathrm{t}$
14	$\ldots=\frac{\text { useful output energy transfer }}{\text { total input energy transfer }}$	
15	$\text { efficiency }=\frac{\text { use ful power output }}{\text { total power input }}$	
16	wave speed $=$ frequency \times	$v=f \lambda$
17	charge flow $=\ldots \times$ time	$Q=1 t$
18	potential difference $=$ current \times resistance	$V=\ldots R$
19	power $=$ potential difference \times	$P=V I$
20	power $=$ current $^{2} \times$	$P=I^{2} R$
21	energy transferred $=$ power \times time	$E=$ __ t
22	energy transferred $=$ charge flow \times potential difference	$E=Q_{\text {_ }}$
23	$\text { density }=\frac{\text { mass }}{\text { volume }}$	$\rho=m / \ldots$

